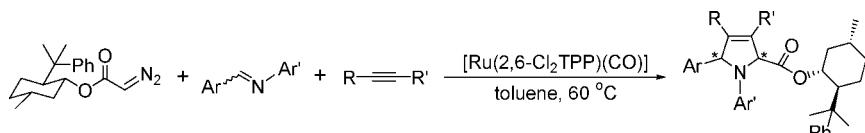


Asymmetric Synthesis of Multifunctionalized Pyrrolines by a Ruthenium Porphyrin-Catalyzed Three-Component Coupling Reaction


Hai-Wei Xu,[†] Gong-Yong Li,[†] Man-Kin Wong,[‡] and Chi-Ming Che^{*,†,‡}

Shanghai-Hong Kong Joint Laboratory in Chemical Synthesis, Shanghai Institute of Organic Chemistry, The Chinese Academy of Sciences, 354 Feng Lin Road, Shanghai 200032, China, and Department of Chemistry and Open Laboratory of Chemical Biology of the Institute of Molecular Technology for Drug Discovery and Synthesis, The University of Hong Kong, Pokfulam Road, Hong Kong, China

cmche@hku.hk

Received April 14, 2005

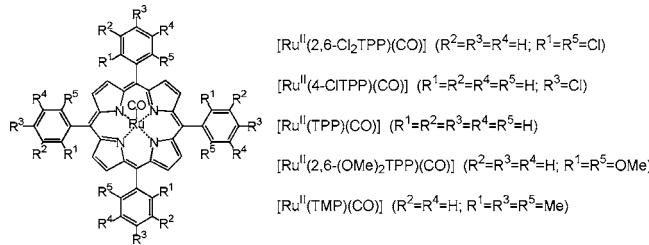
ABSTRACT

Chiral multifunctionalized pyrrolines have been synthesized by a ruthenium porphyrin catalyzed three-component coupling reaction. In a one-pot reaction, ruthenium porphyrins catalyzed *in situ* generation of chiral azomethine ylides from chiral diazo esters and imines. Asymmetric 1,3-dipolar cycloaddition reactions of the chiral azomethine ylides with dipolarophiles afforded the corresponding pyrrolines in good yields and high diastereoselectivity (up to 92% de).

Chiral multifunctionalized pyrrolidines are versatile synthetic building blocks for organic synthesis and important structural elements of many therapeutic drug molecules. Generally, such nitrogen-containing heterocycles are synthesized by asymmetric 1,3-dipolar cycloadditions¹ that employ chiral azomethine ylides,² chiral olefinic dipolarophiles,³ or chiral metal catalysts.⁴ The cycloadditions of chiral azomethine ylides generated *in situ* from *N*-metalation of imines,^{2a} the desilylation of imines,^{2b,e,f} the deprotonation of iminium salts,^{2c,g,h,j} and the thermolysis of aziridines^{2d,i} have been particularly well studied. However, these synthetic strategies do not readily afford a sufficient variety of structurally diverse pyrrolidines for high-throughput biological screening

in a time- and cost-effective manner. Application of multi-component coupling approaches⁵ to this area could facilitate future drug discovery efforts in both academic and industrial laboratories.

(2) For examples, see: (a) Dogan, Ö.; Öner, I.; Ülkü, D.; Arıcı, C.; *Tetrahedron: Asymmetry* **2002**, *13*, 2099. (b) Karlsson, S.; Höglberg, H.-E. *J. Chem. Soc., Perkin Trans. 1* **2002**, 1076. (c) Chinchilla, R.; Falvello, L. R.; Galindo, N.; Nájera, C. *Eur. J. Org. Chem.* **2001**, 3133. (d) Garner, P.; Dogan, Ö.; Youngs, W. J.; Kennedy, V. O.; Protasiewicz, J.; Zaniewski, R. *Tetrahedron* **2001**, *57*, 71. (e) Karlsson, S.; Höglberg, H.-E. *Tetrahedron: Asymmetry* **2001**, *12*, 1975. (f) Karlsson, S.; Höglberg, H.-E. *Tetrahedron: Asymmetry* **2001**, *12*, 1977. (g) Enders, D.; Meyer, I.; Runsink, J.; Raabe, G. *Tetrahedron* **1998**, *54*, 10733. (h) Grigg, R. *Tetrahedron: Asymmetry* **1995**, *6*, 2475. (i) Garner, P.; Dogan, O. *J. Org. Chem.* **1994**, *59*, 4. (j) Deprez, P.; Royer, J.; Husson, H.-P. *Tetrahedron: Asymmetry* **1991**, *2*, 1189.


(3) For examples, see: (a) Ruano, J. L. G.; Tito, A.; Peromingo, M. T. *J. Org. Chem.* **2003**, *68*, 10013. (b) Kagoshima, H.; Okamura, T.; Akiyama, T. *J. Am. Chem. Soc.* **2001**, *123*, 7182. (c) Barluenga, J.; Fernández-Rodríguez, M. A.; Aguilar, E.; Fernández-Marí, F.; Salinas, A.; Olano, B. *Chem. Eur. J.* **2001**, *7*, 3533. (d) Kanemasa, S.; Hayashi, T.; Tanaka, J.; Yamamoto, H.; Sakurai, T. *J. Org. Chem.* **1991**, *56*, 4473. (e) Coulter, T.; Grigg, R.; Malone, J. F.; Sridharan, V. *Tetrahedron Lett.* **1991**, *32*, 5417. (f) Barr, D. A.; Dorritt, M. J.; Grigg, R.; Malone, J. F.; Montgomery, J.; Rajviroongit, S.; Stevenson, P. *Tetrahedron Lett.* **1990**, *31*, 6569. (g) Kanemasa, S.; Yamamoto, H.; *Tetrahedron Lett.* **1990**, *31*, 3633.

[†] The Chinese Academy of Sciences.

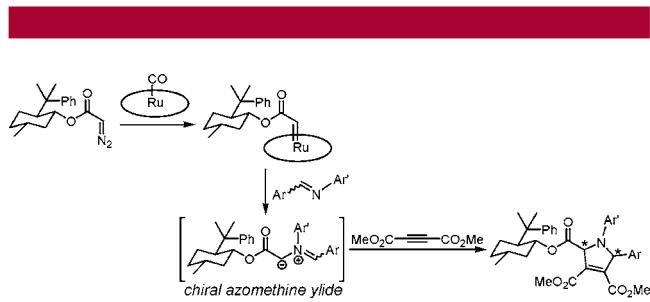
[‡] The University of Hong Kong.

(1) For reviews on asymmetric 1,3-dipolar cycloaddition reactions, see: (a) *Synthetic Applications of 1,3-Dipolar Cycloaddition Chemistry Toward Heterocycles and Natural Products*; Padwa, A., Pearson, W. H., Eds.; Wiley: Hoboken, NJ, 2003. (b) Gothelf, K. V.; Jørgensen, K. A. *Chem. Rev.* **1998**, *98*, 863. (c) Karlsson, S.; Höglberg, H. E. *Org. Prep. Proced. Int.* **2001**, *33*, 105. (d) Nájera, C.; Sansano, J. M. *Curr. Org. Chem.* **2003**, *7*, 1105.

Over the years, we⁶ and others⁷ have demonstrated that ruthenium porphyrins are effective catalysts for highly stereo- and enantioselective carbenoid transfer reactions. We have also shown that ruthenium porphyrins are effective at catalyzing a three-component coupling reaction between α -diazo esters, imines, and olefinic dipolarophiles in a one-pot reaction⁸ for pyrrolidine synthesis.^{9–10}

Herein is described the first asymmetric synthesis of chiral pyrrolines based on the aforementioned ruthenium porphyrin catalyzed three-component coupling process (Figure 1). In this work, we show that ruthenium porphyrins catalyze the decomposition of chiral 8-phenylmenthol α -diazo esters to give metallocarbenoids that react with imines to afford chiral

(4) For examples, see: (a) Chen, C.; Li, X.; Schreiber, S. L. *J. Am. Chem. Soc.* **2003**, *125*, 10174. (b) Oderaotoshi, Y.; Cheng, W.; Fujitomi, S.; Kasano, Y.; Minakata, S.; Komatsu, M. *Org. Lett.* **2003**, *5*, 5043. (c) Longmire, J. M.; Wang, B.; Zhang, X. *J. Am. Chem. Soc.* **2002**, *124*, 13400. (d) Gothelf, A. S.; Gothelf, K. V.; Hazell, R. G.; Jørgensen, K. A. *Angew. Chem., Int. Ed.* **2002**, *41*, 4236. (e) Allway, P.; Grigg, R. *Tetrahedron Lett.* **1991**, *32*, 5817.


(5) (a) Jacobi von Wangelin, A.; Neumann, H.; Gördes, D.; Klaus, S.; Strübing, D.; Beller, M. *Chem. Eur. J.* **2003**, *9*, 4286. (b) Bienaymé, H.; Hulme, C.; Oddon, G.; Schmitt, P. *Chem. Eur. J.* **2000**, *6*, 3321. (c) An, H.; Dan Cook, P. *Chem. Rev.* **2000**, *100*, 3311. (d) Armstrong, R. W.; Combs, A. P.; Tempest, P. A.; Brown, S. D.; Keating, T. A. *Acc. Chem. Res.* **1996**, *29*, 123.

(6) Works by us: (a) Zhou, C.-Y.; Yu, W.-Y.; Chan, P. W. H.; Che, C.-M. *J. Org. Chem.* **2004**, *69*, 7072. (b) Zhang, J.-L.; Chan, P. W. H.; Che, C.-M. *Tetrahedron Lett.* **2003**, *44*, 8733. (c) Zhou, C.-Y.; Chan, P. W. H.; Yu, W.-Y.; Che, C.-M. *Synthesis* **2003**, *9*, 1402. (d) Cheung, W.-H.; Zheng, S.-L.; Yu, W.-Y.; Zhou, G.-C.; Che, C.-M. *Org. Lett.* **2003**, *5*, 2535. (e) Zhou, C.-Y.; Yu, W.-Y.; Che, C.-M. *Org. Lett.* **2002**, *4*, 3235. (f) Zhang, J.-L.; Che, C.-M. *Org. Lett.* **2002**, *4*, 1911. (g) Zheng, S.-L.; Yu, W.-Y.; Che, C.-M. *Org. Lett.* **2002**, *4*, 889. (h) Li, Y.; Huang, J.-S.; Zhou, Z.-Y.; Che, C.-M. *J. Am. Chem. Soc.* **2001**, *123*, 4843. (i) Che, C.-M.; Huang, J.-S.; Lee, F.-W.; Li, Y.; Lai, T.-S.; Kwong, H.-L.; Teng, P.-F.; Lee, W.-S.; Lo, W.-C.; Peng, S.-M.; Zhou, Z.-Y. *J. Am. Chem. Soc.* **2001**, *123*, 4119. (j) Lo, W.-C.; Che, C.-M.; Cheng, K.-F.; Mak, T. C.-W. *J. Chem. Soc., Chem. Commun.* **1997**, 1205.

(7) Works by others: (a) Mirafzal, G. A.; Cheng, G.; Woo, L. K. *J. Am. Chem. Soc.* **2002**, *124*, 176. (b) Hamaker, C. G.; Djukic, J.-P.; Smith, D. A.; Woo, L. K. *Organometallics* **2001**, *20*, 5189. (c) Simonneaux, G.; Galardon, E.; Paul-Roth, C.; Gulea, M.; Masson, S. *J. Organomet. Chem.* **2001**, *617–618*, 360. (d) Galardon, E.; Maux, P. L.; Simonneaux, G. *Tetrahedron* **2000**, *56*, 615. (e) Gross, Z.; Galili, N.; Simkovich, L. *Tetrahedron Lett.* **1999**, *40*, 1571. (f) Galardon, E.; Roué, S.; Maux, P. L.; Simonneaux, G. *J. Chem. Soc., Perkin Trans. 1* **1997**, 2455. (h) Galardon, E.; Maux, P. L.; Simonneaux, G. *Chem. Commun.* **1997**, 927. (i) Frauenkron, M.; Berkessel, A. *Tetrahedron Lett.* **1997**, *38*, 7175. (j) Smith, D. A.; Reynolds, D. N.; Woo, L. K. *J. Am. Chem. Soc.* **1993**, *115*, 2511. (8) (a) Li, Y.; Chan, P. W. H.; Zhu, N.-Y.; Che, C.-M.; Kwong, H.-L. *Organometallics* **2004**, *23*, 54. (b) Li, G.-Y.; Chen, J.; Yu, W.-Y.; Hong, W.; Che, C.-M. *Org. Lett.* **2003**, *5*, 2153.

(9) For a copper-catalyzed three-component coupling reaction for pyrrolidine synthesis, see: Galliford, C. V.; Beenken, M. A.; Nguyen, S. T.; Scheidt, K. A. *Org. Lett.* **2003**, *5*, 3487.

(10) For examples on three-component 1,3-dipolar cycloaddition reactions, see: (a) Fokas, D.; Ryan, W. J.; Casebier, D. S.; Coffen, D. L. *Tetrahedron Lett.* **1998**, *39*, 2235. (b) Hamper, B. C.; Dukesherer, D. R.; South, M. S. *Tetrahedron Lett.* **1996**, *37*, 3671. (c) Murphy, M. M.; Schullek, J. R.; Gordon, E. M.; Gallop, M. A. *J. Am. Chem. Soc.* **1995**, *117*, 7029.

Figure 1. Proposed mechanism.

azomethine ylides. Subsequently, these chiral azomethine ylides undergo 1,3-dipolar cycloaddition reactions with dipolarophiles to afford chiral pyrrolines in good yields and high diastereoselectivities (up to 92% de). In addition, we provide experimental evidence for the proposed mechanism of the three-component coupling reaction.

At the outset, we examined the cycloaddition of chiral 8-phenylmenthol α -diazo ester **3a** with imine **1a** and dimethyl acetylenedicarboxylate (DMAD) **2a** using $[\text{Ru}(2,6-\text{Cl}_2\text{TPP})(\text{CO})]$ as catalyst. Slow addition of **3a** in CH_2Cl_2 to a mixture of **1a**, **2a**, and $[\text{Ru}(2,6-\text{Cl}_2\text{TPP})(\text{CO})]$ (0.1 mol %) in CH_2Cl_2 at 40 °C via a syringe pump afforded cycloadduct **4** in 70% isolated yield. On the basis of ^1H NMR analysis of the crude reaction mixture, two diastereomers were judged to be present in a ratio of 2.1:1 (i.e., 36% de) (Table 1, entry 1).

Table 1. Effect of Solvent^a

entry	solvent	yield ^b (%)	de ^c (%)
1	CH_2Cl_2	70	36
2	$\text{ClCH}_2\text{CH}_2\text{Cl}$	27	33
3	CHCl_3	no reaction	–
4	toluene	70	79
5	benzene	27	50
6	ethylbenzene	40	66
7	xylene	54	67
8	chlorobenzene	49	71
9	THF	no reaction	–

^a Ru catalyst/**1a/2a/3a** = 0.001:1.2:2:1. ^b Isolated yield. ^c Determined by ^1H NMR analysis of the crude products.

We next examined the effect of different solvents on the Ru-catalyzed cycloaddition reaction of **1a**, **2a**, and **3a**. As shown in Table 1, remarkable solvent effects were observed on the diastereoselectivity of cycloaddition. Significant improvements in diastereoselectivity (50–79% de) could be achieved using aromatic solvents (toluene, benzene, ethylbenzene, xylene, and chlorobenzene), when compared with halogenated solvents (CH_2Cl_2 and $\text{ClCH}_2\text{CH}_2\text{Cl}$) (33–36% de). Notably, up to 79% de and 70% yield of **4** could be attained by using toluene as the reaction solvent, and this

was employed for the subsequent studies. No reaction was observed when the reactions were performed in CHCl_3 or THF.

The effect of ligand structure on the ruthenium porphyrin catalyzed cycloaddition reactions of **1a**, **2a**, and **3a** was also examined (Table 2). $[\text{Ru}(2,6-\text{Cl}_2\text{TPP})\text{CO}]$ was found to

Table 2. Effect of Porphyrin Structure^a

entry	catalyst	yield ^b (%)	de ^c (%)
1	$[\text{Ru}(2,6-\text{Cl}_2\text{TPP})\text{CO}]$	70	79
2	$[\text{Ru}(4-\text{CITPP})\text{CO}]$	73	72
3	$[\text{Ru}(\text{TPP})\text{CO}]$	71	71
4	$[\text{Ru}(2,6-(\text{OMe})_2\text{TPP})\text{CO}]$	trace	—
5	$[\text{Ru}(\text{TMP})\text{CO}]$	trace	—

^a Ru catalyst/**1a/2a/3a** = 0.001:1.2:2:1. ^b Isolated yield. ^c Determined by ^1H NMR analysis of the crude products.

exhibit the best diastereoselectivity (79%) and good yield (70%) in the cycloaddition reaction. With $[\text{Ru}(4-\text{CITPP})\text{CO}]$ or $[\text{Ru}(\text{TPP})\text{CO}]$ as catalyst, comparable yields (71–73%) and diastereoselectivities (71–72%) were obtained. While $[\text{Ru}(2,6-(\text{OMe})_2\text{TPP})\text{CO}]$ and $[\text{Ru}(\text{TMP})\text{CO}]$ displayed poor catalytic activity, only a trace amount of cycloaddition product was detected.

When the 8-phenyl ring of chiral α -diazo ester **3a** was replaced by a hydrogen atom, a significant decrease in diastereoselectivity (from 79% to 33%) resulted (Table 3).

Table 3. Effect of Chiral Auxiliary^a

entry	α -diazo ester	X	cycloadduct	yield ^b (%)	de ^c (%)
1	3a	Ph	4	70	79
2	3b	H	5	90	33

^a Ru catalyst/**1a/2a/3** = 0.001:1.2:2:1. ^b Isolated yield. ^c Determined by ^1H NMR analysis of the crude products.

The bulky 8-phenyl ring was therefore crucial to achieving high diastereoselectivity in the cycloaddition reaction.

To define the scope of the Ru-catalyzed cycloaddition process, we extended our studies to a range of *N*-benzylidene imines with different substituents on the two aromatic rings (i.e., R^1 and R^2). Using chiral α -diazo ester **3a** as the carbenoid source, DMAD (**2a**) as dipolarophile, and $[\text{Ru}(2,6-\text{Cl}_2\text{TPP})\text{CO}]$ as catalyst, with a series of *N*-benzylidene imines **1a–k**, the chiral pyrrolines were obtained in good yields and high diastereoselectivity (Table 4).

We note that higher yields (58–70%) were obtained for imines **1a–d** bearing electron-donating substituents ($\text{R}^1 = \text{Ph}$, *m*-MeOPh, *p*-MeOPh, and *p*-MePh) when compared imines **1e,f** with electron-withdrawing substituents ($\text{R}^1 = p$ -ClPh and *p*-NO₂Ph) (39–45% yield). Nevertheless, high diastereoselectivities (70–85%) were achieved for all the

Table 4. Cycloaddition with Various *N*-Benzylidene Imines^a

entry	imine	R^1	R^2	cycloadduct	yield ^b (%)	de ^c (%)
1	1a	Ph	Ph	4	70	79
2	1b	<i>m</i> -MeOPh	Ph	6	58	70
3	1c	<i>p</i> -MeOPh	Ph	7	68	77
4	1d	<i>p</i> -MePh	Ph	8	67	74
5	1e	<i>p</i> -ClPh	Ph	9	45	73
6	1f	<i>p</i> -NO ₂ Ph	Ph	10	39	85
7	1g	Ph	<i>p</i> -MeOPh	11	61	74
8	1h	Ph	<i>p</i> -BrPh	12	30	60
9	1i	Ph	<i>p</i> -ClPh	13	47	70
10	1j	Ph	<i>m</i> -ClPh	14	32	72
11	1k	Ph	<i>o</i> -ClPh			no reaction

^a Ru catalyst/**1/2a/3a** = 0.001:1.2:2:1. ^b Isolated yield. ^c Determined by ^1H NMR analysis of the crude products.

imines **1a–f**. Notably, up to 85% diastereoselectivity was attained for imine **1f** with a *p*-NO₂ substituent (entry 6).

Similarly, a higher yield (61%) was obtained for imine **1g** bearing an electron-donating substituent ($\text{R}^2 = p$ -MeOPh) while 30–47% yields were obtained for imines **1h–j** bearing electron-withdrawing substituents ($\text{R}^2 = p$ -BrPh, *p*-ClPh, and *m*-ClPh). Interestingly, imines **1i** (with *p*-Cl) and **1j** with (*m*-Cl) substituents on the phenyl ring gave the corresponding cycloaddition products **13** and **14** with high diastereoselectivities (70 and 72%, respectively). Notwithstanding this, no reaction was observed for the *o*-Cl-substituted imine **1k**, probably due to the steric bulkiness of the *o*-Cl substituent.

With $[\text{Ru}(2,6-\text{Cl}_2\text{TPP})\text{CO}]$ as catalyst, the cycloadditions of **3a** with dipolarophiles of different steric bulkiness and electronic properties were also examined (Table 5). Remark-

Table 5. Effect of Various Dipolarophiles^a

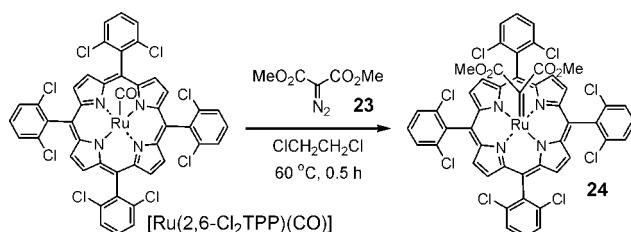
entry	dipolarophile	R^3	R^4	cycloadduct	yield ^b (%)	de ^c (%)
1	2a	CO ₂ Me	CO ₂ Me	4	70	79
2	2b	CO ₂ Et	CO ₂ Et	15	59	67
3	2c	CO ₂ - <i>i</i> -Pr	CO ₂ - <i>i</i> -Pr	16	50	92
4	2d	H	CO ₂ Me		no reaction	
5	2e	Me	CO ₂ Me		no reaction	

^a Ru catalyst/**1a/2/3a** = 0.001:1.2:2:1. ^b Isolated yield. ^c Determined by ^1H NMR analysis of the crude products.

ably, up to 92% de was achieved for the bulky dipolarophile **2c** ($\text{R}^3 = \text{R}^4 = \text{CO}_2\text{-i-Pr}$) while only 67% de was attained for **2b** ($\text{R}^3 = \text{R}^4 = \text{CO}_2\text{Et}$). This result suggests that high diastereoselectivity can be achieved via modification of the steric bulk of the dipolarophiles. For the less electron-deficient dipolarophile **2d,e**, no reactions were observed.

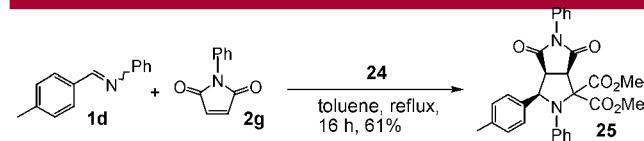
Cycloaddition reactions with different olefinic dipolarophiles were conducted (Table 6). High diastereoselectivity

Table 6. Cycloaddition with Olefinic Dipolarophiles^a


entry	olefinic dipolarophile	cycloadduct	yield (%) ^c	de (%) ^d
1	2f R = Me	17	74	78
2	2g R = Ph	18	76	71
3	2h R = CH ₂ Ph	19	64	71
4 ^b	2i R = CO ₂ Me	20	47	35
5 ^b	2j R = CN	21	30	nd

^a Ru catalyst/1a/2/3a = 0.001:1.2:1:1.1, at 60 °C. ^b Ru catalyst/1a/2/3a = 0.001:1.2:1:4, at 90 °C. ^c Isolated yield. ^d Determined by ¹H NMR analysis of the crude products.

(up to 78%) and good yields (64–76%) were obtained for cyclic imides **2f–h** while less satisfactory results were found for terminal alkenes **2i,j**. However, attempts to use chalcone, methyl crotonate, and *trans*-4-phenyl-3-butene-2-one failed to give the corresponding cycloadducts under the same reaction conditions. Instead, an unexpected 8-phenylmenthol phenylamino ester **22** (45–56% yield) was obtained (see the Supporting Information). Probably, the ester arose from an N–H insertion of 8-phenylmenthol carbene into aniline, which was generated from the decomposition of imine **1a**. No reactions were observed for maleic anhydride and dimethyl maleate.


It is well-known that azomethine ylides undergo 1,3-dipolar cycloaddition with dipolarophiles to give pyrrolidines. However, there is sparse evidence on the generation of azomethine ylides from metallocarbenes and imines for cycloaddition. Here, we have found that pyrrolidines can be prepared from the one-pot reaction of an isolated ruthenium–carbene complex together with imine and dipolarophile.

An isolated Ru–carbene complex **24** was prepared from the reaction of [Ru(2,6-Cl₂TPP)(CO)] with diazo ester **23** in 1,2-dichloroethane at 60 °C for 0.5 h under an argon atmosphere (Figure 2). Complex **24** was recrystallized from 1,2-dichloroethane/hexane.

Figure 2. Synthesis of **24**.

On the basis of X-ray crystallographic analysis of **24**, the ruthenium–carbene distance is 1.854(8) Å, which is comparable to the reported examples¹¹ (see the Supporting Information).

In a one-pot reaction, bicyclic pyrrolidine **25** was obtained in 61% yield by reacting a stoichiometric amount of Ru–carbene complex **24**, imine **1d**, and dipolarophile **2g** in refluxing toluene for 16 h (Figure 3). This experi-

Figure 3. Synthesis of **25**.

ment offers an experimental evidence that ruthenium–carbene complex can react with imines to generate azomethine ylides for 1,3-dipolar cycloaddition with cyclic imides.

In conclusion, we have found that ruthenium porphyrins are effective catalysts for asymmetric synthesis of multi-functionalized pyrrolines with remarkable stereoselectivity via a three-component coupling reaction involving chiral diazo esters, *N*-benzylidene imines, and dipolarophiles.¹²

Acknowledgment. We are thankful for the support of the Areas of Excellence Scheme established under the University Grants Committee of the Hong Kong Special Administrative Region, China (AoE/P-10/01), The University of Hong Kong (University Development Fund), and Hong Kong Research Grants Council (HKU 7099/01P). H.W.X. and G.Y.L. thank the Croucher Foundation of Hong Kong for the postgraduate studentships.

Supporting Information Available: Detailed experimental procedures, characterization data, X-ray crystallographic data of **24**, ¹H NMR spectra, and HPLC analysis. This material is available free of charge via the Internet at <http://pubs.acs.org>.

OL050819N

(11) (a) Reference 6i. (b) Li, Y.; Huang, J.-S.; Xu, G.-B.; Zhu, N.; Zhou, Z.-Y.; Che, C.-M.; Wong, K.-Y. *Chem. Eur. J.* **2004**, *10*, 3486.

(12) Several attempts failed to obtain crystalline solids of the cycloaddition products for absolute configuration determination by X-ray crystallography analysis. Current efforts are directed toward the preparation of other pyrroline analogues for X-ray crystallography analysis.